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Abstract

Memory networks are formed in the cerebral cortex by associative processes, following Hebbian principles of
synaptic modulation. Sensory and motor memory networks are made of elementary representations in cell assemblies
of primary sensory and motor cortex (phyletic memory). Higher-order individual memories, e.g. episodic, semantic,
conceptual — are represented in hierarchically organized neuronal networks of the cortex of association. Perceptual
memories are organized in posterior (post-rolandic) cortex, motor (executive) memories in cortex of the frontal lobe.
Memory networks overlap and interact profusely with one another, such that a cellular assembly can be part of many
memories or networks. Working memory essentially consists in the temporary activation of a memory network, as
needed for the execution of successive acts in a temporal structure of behavior. That activation of the network is
maintained by recurrent excitation through reentrant circuits. The recurrent reentry may occur within local circuits
as well as between separate cortical areas. In either case. recurrence binds together the associated components of the
network and thus of the memory it represents. © 2000 Elsevier Science B.V. All rights reserved.
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In this article I discuss the neural mechanisms networks, that is, with the static or anatomi-
by which cortical memory networks are activated cal aspects of representation of memory in
in the retention of active memories at the service the cerebral cortex.
of behavior, in other words, in so-called ‘working 2. Secondly, I will deal with the main topic of
memory.” Two related subjects will be successively the article, the dynamics of those memory
considered: networks in active short-term, or working,

memory.

1. In the first place, by way of background, I will
deal briefly with the architecture of memory

1. Network memory
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ology in primates, and from the neuroimaging of
active memory in the human, the concept of
distributed cortical memory is becoming every
day more compelling. To be sure, this is not an
altogether new concept. It has been favored in
the past by a number of experimentalists and
theoreticians of the brain (Lashley, 1950; Hayek,
1952; Mountcastle, 1978). What is new is the
increasing recognition that the memory networks
are widely spread over the cortex, and that their
distribution transcends any given cortical areas or
module, however defined. Further, we are learn-
ing that those networks overlap one another ana-
tomically, are highly interactive, and hierarchi-
cally organized. Most radically new is the idea
that different networks share some of the same
neurons and connections; in other words, that any
cortical neuron or group of neurons can be part
of many networks, and thus part of many
memories.

First, let us recapitulate our best understanding
of how the memory networks of the cortex are
formed, how is memory acquired. At the root of
memory formation is obviously the synapse. This
was first hypothesized by Tanzi and by Cajal, in
1893-1894 and has now been well substantiated.
A memory is encoded in the cortex by a pattern
of interconnected neurons, and thus the conduc-
tivity of the synapses that web a network of neu-
rons together is the essence of mnemonic encod-
ing, of the memory trace. A memory is a network,
which is structurally reducible to axons, cells and
molecules, but the content of the memory is not
reducible to those neural elements or even to
their patterns of change or of cell firing. The
content of the memory is a relational code that
emerges from the combination of those elements
and is essentially irreducible to them.

In the course of ontogenetic development, and
also probably in phylogeny, the memory networks
of primary sensory and motor systems of the
cortex become established according to certain
principles of selective reorganization. Those net-
works will constitute what I have called phyletic
memory, which is the essential substrate of sen-
sory and motor cortex and constitutes the founda-
tion of the hierarchy of the memory networks of
the individual. Above that phyletic base, in

parasensory and paramotor areas, and in cortex
of association, the networks of individual experi-
ence will be formed. These will be constituted by
hebbian principles of synaptic potentiation and by
self-organization in interaction with the environ-
ment.

We have good reasons to suspect, although it
has not been proven, that in the formation of
neocortical networks of individual memory, the
hippocampus, a region of ancient cortex, plays a
fundamental role (Amaral, 1987; Squire and
Zola-Morgan, 1988). It is still a matter of specula-
tion that this role is mediated by certain mecha-
nisms such as LTP and certain excitatory, glu-
taminergic receptors, such as NMDA receptors.

The aggregate result of the primate’s interac-
tions with the environment will be the gradual
emergence, on a basis of phyletic memory, of two
massive hierarchies of overlapping and profusely
integrated networks: one hierarchy in posterior
(postrolandic) neocortex for perceptual memory
and the other in anterior or frontal neocortex for
motor or executive memory. It is a curious and
probably more than casual coincidence that the
two hierarchies develop along myelogenetic gradi-
ents.

At the base of the connective hierarchy of
perceptual memories lies a layer of phyletic sen-
sory memory, the primary sensory cortices. Above
that, in parasensory cortices, lies a layer of cross-
modal and polysensory memories or networks.
Higher up, in cortex of association, lie the net-
works of episodic, semantic, and conceptual me-
mory, by order of increasing generality and abs-
traction.

‘Long-term’ memory, therefore, constitutes the
sum-aggregate of all the connectivity established
in those two massive, overlapping, interconnected
and hierarchically organized networks of neocor-
tical neurons. The idiosyncrasy, indeed individual-
ity, of our memories derives from the combina-
torial power, practically infinite, of some ten bil-
lion neocortical neurons. To be sure, on every
new experience that combinatorial power is con-
strained by such factors as the organization and
strength of prior synaptic connectivity.

Before continuing, I want to emphasize two
important caveats that derive from the anatomy
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of memory and that bear on the processing of
memory: (a) hierarchical organization does not
necessarily imply serial processing, for serial as
well as parallel processing take place in the pro-
cessing of any memory, and (b) the processing of
perceptual and motor memories involves by ne-
cessity the cortico—cortical connections between
posterior and anterior neocortex at all levels of
the perceptual and executive hierarchies, in other
words, the associative connections between per-
ceptual and motor networks.

2. Active memory

In the course of our daily life, myriad networks
of latent and passive long-term memory are re-
trieved and activated in our cortex by association,
as required by perturbations in the internal and
external milieu. Some are only transiently acti-
vated in conscious or unconscious recall or recog-
nition. Others, because they are essential to the
temporal structuring of reasoning and behavior,
are activated in a sustained fashion, as required
for the integration of acts and behaviors that
depend on temporally discontinuous events. Such
is the case in sequential behaviors, in the mental
search for solution to logical problems and, of
course, in the performance of that broad category
of tasks invented by experimental psychologists
that we commonly call ‘delay tasks.” These tasks
have turned out to be invaluable for exploring the
neuronal dynamics of active memory.

Clearly we are not quite ready yet to explore in
depth the neural dynamics of episodic or seman-
tic memory, let alone conceptual memory. Neu-
ropsychology and neuroimaging merely provide us
with faint glimpses of the mechanisms of their
activation in the encoding and retrieval of me-
mories. What we are ready to explore, and are
exploring, is the mechanisms of activation of sen-
sory memories in so-called working memory, and
therefore in delay tasks. This kind of research,
especially with microelectrodes, is not only useful
for us to be able to study memory mechanisms
but to unravel the topography and architecture of
memory networks. The mechanisms of activation
of sensory memories, we hope, are paradigmatic

of the mechanisms of activation of other forms of
memory, episodic and semantic for example.

It is in the prefrontal cortex where many years
ago, in my laboratory, we found the first working-
memory cells. However some misconceptions
should be dispelled in this regard. The prefrontal
cortex is not the center of working memory, work-
ing memory is not the only function of the pre-
frontal cortex, and working memory is not cir-
cumscribed to the prefrontal cortex. The reason
the prefrontal cortex is so prominent in the work-
ing-memory literature is not only because me-
mory cells were found there first, but because all
the tasks used to test working memory in humans
or monkeys (e.g. delay tasks) require the integra-
tion of a motor act with prior sensory information
(Fuster, 1995). It is the temporal integration of
the act, an executive action, that makes the pre-
frontal cortex and its cells so important for the
working memory that the prospective execution
of the act requires (Fuster, 1985).

Working memory is, in fact, a state of memory
as widely distributed over the cortical surface as
the long-term memory network that constitutes
its structural substrate. Thus, for example in the
monkey that has been trained to perform a visual
delayed matching-to-sample task, the cells of in-
ferotemporal cortex are activated and remain ac-
tivated while the monkey must retain the memory
of the visual stimulus (Fuster and Jervey, 1982).
In addition, of course, prefrontal cells are also
activated and remain activated because that sti-
mulus elicits a motor memory and must be re-
tained and activated, together with the motor
memory, until the action is executed (Fuster et
al., 1982). The breadth of the cortical network
activated in visual short-term memory can also be
observed by neuroimaging in the human (Swartz
et al., 1995).

The shared activation by inferotemporal and
prefrontal cells in visual delay matching reflects
the interactions within a vast memory network of
posterior and frontal cortex in visual working
memory. It is thus reasonable to postulate that, in
a visual delayed matching task, the memorandum,
which is a stimulus to be retained for prospective
action, elicits the activation of a large network
with two component networks: an inferotemporal
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network representing the visual memorandum and
a prefrontal network representing the motor re-
sponse at the end of each trial (e.g. a manual
choice of color). That large composite network
can be rendered reversibly weak or inoperative by
cooling either inferotemporal or dorsolateral pre-
frontal cortex, whereby the retention of the sti-
mulus fails and, with it the performance of the
task (Bauer and Fuster, 1976; Fuster et al., 1981).
The animal can perform the task but appears
incapable of retaining the stimulus of each trial
and of carrying out the proper manual choices.

The interaction between the two cortices —
inferotemporal and prefrontal — in visual me-
mory can be further substantiated by cooling one
cortex and recording with microelectrodes from
the other during performance of a delayed match-
ing-to-sample task (Fuster et al., 1985). Prefrontal
cooling appears to diminish the capacity of infer-
otemporal cells to retain colors in short-term
memory. Inferotemporal cooling seems to have a
similar effect on prefrontal cells. In sum, it ap-
pears that by cooling either cortex we interrupt
loops of recurrent activation functionally inter-
connecting the two cortices in the retention of
visual short-term memory for a prospective act.
The flow of excitatory influences in those loops
would be what allows the active retention of the
memorandum.

3. Recurrent activation of a memory network

The concept that short-term memory consists
in the reverberation of impulses through recur-
rent networks was first proposed by Hebb (1949).
He based that concept on the histological evi-
dence of profuse recurrent fiber connections in
the cerebral cortex (Lorente de NO§, 1949), and
applied the concept to the role of peristriate
cortex in visual short-term memory. The results of
our cooling experiments, however, suggest that
the recurrent reverberation of visual working me-
mory is more wide-ranging than Hebb envisioned.
The sustained activation of a visual memory net-
work seems to require wide-ranging cortico—corti-
cal connectivity as well as the local reentrant
circuit

In order to test the reverberation idea in active
memory, we have used several methods. The first
was to construct a spiking computer network
model and to train it to retain information for the
short term (Zipser et al., 1993). The purpose was
to find out if, in short-term memory, the units of
the model behaved like real cortical cells in an
active memory network. The architecture of the
model was essentially reentrant: any unit in the
network was connected to all others by reentrant
connections (Fig. 1). The model was trained by
the backpropagation method (Rumelhart et al.,
1986). This method is an error-reducing proce-
dure that, through successive iterations, allows
the network to adjust its synaptic weights in order
to maintain a stable input-output relationship de-
spite fluctuations in input value. After training,
the weights stay fixed.

At variance with conventional backpropagation
models, ours has a load signal or gate. When the
gate is open (load signal 0), the last input of a
given value is allowed in the network and held
within it at that value (In the brain, the gate
could be a limbic structure or the prefrontal
cortex). Allowing for the stochastic firing of real
neurons, all input and output values were as-
sumed to reflect spiking probability (Amit, 1990).
This assumes that in the absence of change of
input or output a cell will discharge at random
with fixed probability. Input changes are trans-
lated into changes of spike frequency, each with a
random distribution inter-spike intervals. In the
trained model, single units are substituted by
pools of units representing cell assemblies or net-
work components (‘netlets’) in the real brain. The
input to a pool of cells is determined by two
vectors: one is a function of the total outputs
from the network’s pools’, and the other is de-
termined by external inputs. Two additional vec-
tors are the weights of connection with other
pools and with external inputs.

On the fully trained network, a memory task
trial can be simulated by loading an analog input,
that is, the memorandum. and by holding the gate
open (load signal 0) throughout the memory pe-
riod or delay until the act of recognition, when
the load signal changes level, in effect closing
again the gate without input. In these conditions,
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Fig. 1. Network model of short-term memory. Above: The model’s recurrent architecture. A neuron’s body is represented by a
triangle with dendrites leading to it from the left. Synaptic weights (w) are established by the training of the network to retain input
information in order to emit a later output that is a function of the input. A load signal gates the input. H1, H2, Hn are hidden
units. Below: Diagram of the training paradigm (activity refers to firing probability). Arrows mark the input levels that the load

signal gates into the network. From Zipser et al., 1993.

the units of the network behave like cells in the
real cortex during the trials of a memory task,
especially if a certain amount of internal noise is
injected into the network (cells in a real cortical
network are also in a noisy environment). The
behavior of output cells is unremarkable, since
they reflect the transfer function from input to
output, defined beforehand. Truly noteworthy,
however, is the behavior of the internal units of
the network (‘hidden units’) which — with ade-

quate scaling — show temporal patterns of firing
that are extraordinarily similar to those of cortical
cells in the memory task (Fig. 2). Those patterns
of discharge, which so much resemble those of
real cells, are part of a repertoire obtained by
repeated test of the sample-and-hold operation of
the model and generated by the model’s internal
architecture.

Consequently, the firing patterns of cortical
neurons in a memory task can be understood as a
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Fig. 2. Comparison of real cortical cells (experiment) with
hidden units from the model in short-term memory. The
model’s histograms have been scaled for easy comparison. The
experimental records have been extracted from published
studies in the monkey. From Zipser et al., 1993.

result of the activation of a fully trained, recur-
rent memory network with preestablished synap-
tic weights. The training mechanism by which the
weights have been fixed in the model is immate-
rial to the validity of this conclusion. Of course,
backpropagation has little to do with the selective
or hebbian mechanisms guiding the storage of
memory in the cerebral cortex. What is important
is that, once the weights have been set (that is,
the memory has been acquired), the short-term
activation of the network elicits in its component
units similar patterns of firing in the model as in

the brain. Thus, the importance of recurrence in
the cortical dynamics of working memory is subs-
tantiated by the behavior of the hidden units in a
model which has recurrence as an essential fea-
ture of its functional architecture.

Further, the model we constructed showed an-
other characteristic of exceptional interest for
understanding the firing patterns of cortical cells
in an active memory network. It showed on close
analysis that, in the absence of new inputs or
changes in current input, the firing of the net-
work’s units will not remain invariable, but will
drift toward one or several frequencies and will
shift between them. A unit will change repeatedly
and in a more or less regular manner between
several frequencies. This phenomenon is most
evident at fine temporal resolutions, as changes
occur rapidly. Those fine firing shifts are not
apparent at coarse temporal scale or in smoothed
frequency histograms.

That phenomenon of the model at a fine tem-
poral resolution, despite its unclear origin, obliged
us to examine in detail the discharge of real cells
of the inferotemporal cortex in a visual memory
task. Analyzing spike trains at fine temporal reso-
lution, we discovered rapid changes between al-
ternating frequencies that were similar to those
exhibited by the model. We reasoned that those
changes might be inherent in recurrent networks
and resulted precisely from their reentry property.
Cowan (1971) was one of those showing for the
first time that recurrent networks of nonlinear
units, like ours, tend to drift toward and between
certain frequencies called ‘attractors’.

It is unclear whether there are any physiologi-
cal or anatomical constraints, instead of or in
addition to recurrence, that could account for
what has been called ‘attractor dynamics’ in corti-
cal networks engaged in the active retention of
information. It is possible that attractor dynamics
is at least in part determined by intrinsic mecha-
nisms of cortical cells (Llinds, 1990). It seems
plausible, however, to explore the physiological
role of recurrent brain circuitry as the basis for
attractor dynamics in active short-term memory.
Supporting this presumption is our evidence of
the cortico-cortical loops in memory (Fuster et
al.,, 1985) which I have mentioned above. Also
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supporting the hypothesis is the remarkable simi-
larity of firing patterns, which I have also men-
tioned, between the units of the monkey and
those of an artificial recurrent network during
active short-term memory.

Assuming that a memory network links the
associated attributes of a memorandum, and if
these attributes are represented in separate but
interconnected cell assemblies of the cortex, it is
possible that the activation of the memorandum
(i.e. the network) results in the reverberation of
impulses between those assemblies. That rever-
beration could be the foundation of attractor
dynamics in active memory. A neuron’s attractor
frequency may reflect the circulation of impulses
between it and other neurons of the network.
Each of the cell’s attractor frequencies might
reflect its functional linkage to a different compo-
nent of the memorandum. Consequently, the cell
would be subject to as many attractors as there
are associated features of the memorandum. That
functional linkage by reentry would be a kind of
binding in memory, similar to the binding of
objects in perception.

These propositions are testable electrophysio-
logically. In accord with the principle of attractor
dynamics, we tested the general prediction that
any given cell in a memory network will show
more fluctuations of firing frequency while the
network is engaged in active memory than when
it is not. That prediction is based on the assump-
tion that, as a member of an active network, the
cell will be subject to more inputs — excitatory as
well as inhibitory — than when the network is in
the inactive state. Since cellular action potentials
are generated and inhibited discontinuously as
the result of the temporal summation of presy-
naptic potentials, the more inputs of diverse ori-
gin a cell receives the less stable its firing will be.
This is especially likely in neurons of a cortical
network representing a complex memorandum,
and thus subject to many attractors.

For the purpose of testing that prediction, cells
of the somatosensory cortex of the monkey were
investigated during active memory of the surface
features of an object perceived by active touch
(Zhou and Fuster, 1996; Bodner et al., 1997).
Single-cell firing was recorded as the animal per-

formed a haptic memory task. Each task trial
began with the blind palpation of a sample rod
with a special surface feature (smooth or rough
surface, horizontal or vertical edges). A delay of
12 s followed (memory period), at the end of
which the monkey was allowed to palpate two
rods and choose, for a reward, the one of the two
that was identical to the sample. Two spike trains
were selected on every trial from each cell: the
first in the 12-s baseline period preceding the
trial, and the second in the 12-s memory period.

‘Memory cells’ were found in somatosensory
cortex, as in other cortical regions (Fuster, 1995).
Some show higher firing frequency as soon as the
animal has to retain a stimulus in short-term
memory (the delay). Some show a different level
of firing depending on the particular stimulus in
memory. In our analysis, however, we included
cells whose average firing during memorization
did not differ significantly from baseline (sponta-
neous firing between trials). Our aim was to un-
cover differences in the number of rapid fluctua-
tions of firing frequency (number of attractors?)
between baseline and memorization periods.

Although the analysis of inferotemporal cells
had provided us with some general idea of the
velocity of ‘attractor shifts’ (Zipser et al., 1993),
here in parietal cortex we had no notion, a priori,
of that velocity and, consequently, of the tem-
poral resolution needed to explore it in a massive
body of spike trains from many neurons. Further,
we had no grounds to assume that all cells in our
sample would show frequency fluctuations, much
less at the same resolution. We needed a multiple
filter of cell-firing transients.

A ‘filter’ of this kind is, for example, the binary
mapping of discrete temporal events — i.e. cell
spikes (Fig. 3). This is the method we adopted. It
is useful for detecting, in a given time series,
fluctuations of frequency (transitions) without
prior notion of the range in which they occur. The
following mapping procedure was conducted on
each of the spike trains from a somatosensory cell
during intertrial baseline and ‘delay’ periods. First,
the 12-s period was segmented into equal-size
bins, and second, a 1 or a 0 was assigned to each
bin depending on whether it contained any spike
or not. In the resulting binary curve, a frequency
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transition was defined as a shift from 0 to 1 or
vice versa. By segmenting successively the record
into bins of various sizes, the method becomes
essentially a non-linear low-pass filter of spike-
frequency changes or transitions. We systemati-
cally used all bin sizes between 1 and 140 ms in
1-ms increments; in other words, we applied to
each spike train 140 filters or time resolutions.

The number of transitions was found to be
higher, and at more bin sizes, during delays
(memory periods) than during inter-trial baseline
periods (Fig. 4). As predicted, the cells appeared
subject to increased inputs while the monkey me-
morized the palpated object. Furthermore, the
increase in transitions need not be accompanied
by average frequency change. The differences in
transitions between baseline and delay were most
prominent at bin-sizes between 20 and 50 ms.

As expected, therefore, cortical cells in active
memory appear to fluctuate more often between
firing frequencies than in spontaneous baseline

condition. The transition analysis, however, does
not specify precisely those frequencies. Transition
differences within a given range of resolution
simply imply that the transitions themselves occur
most often at the frequencies corresponding to
that range, but they do not specify the cell’s
discharge between transitions, except within wide
limits — from 10 to 50 Hz. In a given cell, an
increase of transitions between attractor frequen-
cies would indicate the multiplication of reentries
upon the cell from within the memory network to
which the cell belongs. The attractors, however,
need not be ‘fixed-point’ (fixed frequencies).
Complex patterns of transitions (‘limit-cycle at-
tractors’) are also possible. These would be even
more consistent with multiple reentry. We are
now investigating such patterns.

In conclusion, the excitatory reentry through
recurrent circuits appears to be a plausible mech-
anism for maintaining the activation of a memory
network. That reentry may functionally bind
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Fig. 3. Binary mapping procedure. For illustration, two spike trains (approx. 0.5, s long), with identical number of spikes but
different temporal distribution, are converted into binary sequences by using three levels of temporal resolution, that is, three
different bin sizes (20, 40, and 80 ms). From Bodner et al., 1997.
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Fig. 4. Frequency and transition analysis of spike trains (all 12-s long) from two parietal cells in all trials of a haptic memory task
during recording (cell positions marked by a small triangle in cortical cuts below). Upper graphs: Ranking of spike trains by average
frequency (trains from intertrial baseline in white, from delay in black; trains are ranked from left to right in descending order,
independent of trial sequence or period-baseline or delay). Lower graphs: Ranking of the same trains by transition counts on binary
curves with a mapping bin size of 20 ms for cell A and 23 ms for cell B (the mapping bins are selected for illustration of clear
ranking separation between baseline and delay). Note that in both cells transition counts were higher for delay than baseline
(P <0.01) in the absence of significant differences in average spike frequency. From Bodner et al., 1997.

together the associated components of the me-
mory represented by the network. The reentrant
binding may take place within a relatively discrete
cortical domain or between widely separated cor-
tical areas, depending on the dispersion of the
associated features of the active memory.
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